Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years.

نویسندگان

  • Connie C W Hsia
  • Robert L Johnson
  • Paul McDonough
  • D Merrill Dane
  • Myresa D Hurst
  • Jennifer L Fehmel
  • Harrieth E Wagner
  • Peter D Wagner
چکیده

Mammals native to high altitude (HA) exhibit larger lung volumes than their lowland counterparts. To test the hypothesis that adaptation induced by HA residence during somatic maturation improves pulmonary gas exchange in adulthood, male foxhounds born at sea level (SL) were raised at HA (3,800 m) from 2.5 to 7.5 mo of age and then returned to SL prior to somatic maturity while their littermates were simultaneously raised at SL. Following return to SL, all animals were trained to run on a treadmill; gas exchange and hemodynamics were measured 2.5 years later at rest and during exercise while breathing 21% and 13% O(2). The multiple inert gas elimination technique was employed to estimate ventilation-perfusion (Va/Q) distributions and lung diffusing capacity for O(2) (Dl(O(2))). There were no significant intergroup differences during exercise breathing 21% O(2). During exercise breathing 13% O(2), peak O(2) uptake and Va/Q distributions were similar between groups but arterial pH, base excess, and O(2) saturation were higher while peak lactate concentration was lower in animals raised at HA than at SL. At a given exercise intensity, alveolar-arterial O(2) tension gradient (A-aDo(2)) attributable to diffusion limitation was lower while Dlo(2) was 12-25% higher in HA-raised animals. Mean systemic arterial blood pressure was also lower in HA-raised animals; mean pulmonary arterial pressures were similar. We conclude that 5 mo of HA residence during maturation enhances long-term gas exchange efficiency and Dl(O(2)) without impacting Va/Q inequality during hypoxic exercise at SL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation.

In a previous study, our laboratory showed that young dogs born at sea level (SL) and raised from 2.5 mo of age to beyond somatic maturity at a high altitude (HA) of 3,100 m show enhanced resting lung function (Johnson RL Jr, Cassidy SS, Grover RF, Schutte JE, and Epstein RH. J Appl Physiol 59: 1773-1782, 1985). To examine whether HA-induced adaptation improves pulmonary gas exchange during exe...

متن کامل

Permanent alveolar remodeling in canine lung induced by high-altitude residence during maturation.

Young canines born at sea level (SL) and raised for 5 mo at high altitude (HA, 3,800 m), followed by return to SL before somatic maturation, showed enhanced alveolar gas exchange and diffusing capacity at rest and exercise that persisted into adulthood (McDonough P, Dane DM, Hsia CC, Yilmaz C, Johnson RL Jr. J Appl Physiol 100: 474-81, 2006; Hsia CCW, Johnson RL Jr, McDonough P, Dane DM, Hurst ...

متن کامل

Alveolar diffusion-perfusion interactions during high-altitude residence in guinea pigs.

We previously reported in weanling guinea pigs raised at high altitude (HA; 3,800 m) an elevated lung diffusing capacity estimated by morphometry from alveolar-capillary surface area, harmonic mean blood-gas barrier thickness, and pulmonary capillary blood volume (Vc) compared with litter-matched control animals raised at an intermediate altitude (IA; 1,200 m) (Hsia CCW, Polo Carbayo JJ, Yan X,...

متن کامل

High-altitude exposure of three weeks duration increases lung diffusing capacity in humans.

BACKGROUND high-altitude adaptation leads to progressive increase in arterial Pa(O2). In addition to increased ventilation, better arterial oxygenation may reflect improvements in lung gas exchange. Previous investigations reveal alterations at the alveolar-capillary barrier indicative of decreased resistance to gas exchange with prolonged hypoxia adaptation, but how quickly this occurs is unkn...

متن کامل

Functional Significance of a Low Pulmonary Diffusing Capacity for Carbon Monoxide

Diffusing capacity of the lungs imposes a theoretical limit to oxygen consumption, causing oxygen saturation of arterial blood to fall sharply if this limit is approached (1). The diffusing surface of the normal lung is so large, however, that at sea level oxygen capacity of the blood and the cardiac output rather than diffusing capacity create the major bottleneck to oxygen transport (2). Diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 102 4  شماره 

صفحات  -

تاریخ انتشار 2007